BẢN TIN THƯ VIỆN

Sách như một cánh cổng diệu kỳ đưa ta đến những chân trời của lý tưởng, khát vọng và bình yên. Cuộc đời ta thay đổi theo hai cách: Qua những người ta gặp và qua những cuốn sách ta đọc. Đọc sách là nếp sống, là một nét đẹp văn hóa và là nguồn sống bất diệt. Việc đọc cũng giống như việc học. Có đọc, có học thì mới có nhân. Thói quen đọc sách chỉ được hình thành và duy trì khi chữ tâm và sách hòa quện làm một. Người đọc sách là người biết yêu thương bản thân mình và là người biết trân trọng cuộc sống. Việc đọc một cuốn sách có đem lại cho bạn lợi ích hay không, phụ thuộc vào thái độ và tâm thế của bạn khi đọc.

TÀI NGUYÊN SỐ TRƯỜNG THCS HẠ LONG

Thống kê

  • truy cập   (chi tiết)
    trong hôm nay
  • lượt xem
    trong hôm nay
  • thành viên
  • Thành viên trực tuyến

    1 khách và 0 thành viên

    Ảnh ngẫu nhiên

    Khuc_xa_anh_sanh.jpg Untitled.png Hinh_302_KHTN_7.png Picture3.png

    Quảng Ninh phát triển du lịch trở thành ngành kinh tế mũi nhọn

    Yêu Bác lòng ta trong sáng hơn

    Các đề luyện thi

    Wait
    • Begin_button
    • Prev_button
    • Play_button
    • Stop_button
    • Next_button
    • End_button
    • 0 / 0
    • Loading_status
    Nhấn vào đây để tải về
    Báo tài liệu có sai sót
    Nhắn tin cho tác giả
    (Tài liệu chưa được thẩm định)
    Nguồn:
    Người gửi: Nguyễn Văn Hiển
    Ngày gửi: 20h:29' 02-04-2023
    Dung lượng: 2.1 MB
    Số lượt tải: 197
    Số lượt thích: 0 người
    Các dạng toán và phương pháp giải toán Đại số 6
    CÁC DẠNG TOÁN
    VÀ PHƯƠNG PHÁP GIẢI TOÁN LỚP 6
    TẬP HỢP, PHẦN TỬ CỦA TẬP HỢP
    I. LÍ THUYẾT
    1. Tập hợp. Phần tử của tập hợp:
    - Tập hợp là một khái niệm cơ bản. Ta hiểu tập hợp thông qua các ví dụ.
    - Tên tập hợp được đặt bằng chữ cái in hoa.
    - Các phần tử của một tập hợp được viết trong hai dấu ngoặc nhọn { }, cách nhau bởi dấu ";" (nếu có phần
    tử là số) hoặc dấu ",". Mỗi phần tử được liệt kê một lần, thứ tự liệt kê tùy ý.
    - Kí hiệu:
    1 Î A đọc là 1 thuộc A hoặc 1 là phần tử của A;
    5 Ï A đọc là 5 không thuộc A hoặc 5 không là phần tử của A;
    - Để viết một tập hợp, thường có hai cách:
    + Liệt kê các phần tử của tập hợp.
    + Chỉ ra tính chất đặc trưng cho các phần tử của tập hợp đó.
    - Một tập hợp có thể có một phần tử, có nhiều phần tử, có vô số phần tử, cũng có thể không có phần tử nào
    (tức tập hợp rỗng, kí hiệu .
    - Nếu mọi phần tử của tập hợp A đều thuộc tập hợp B thì tập hợp A gọi là tập hợp con của tập hợp B. Kí
    hiệu: A Ì B đọc là: A là tập hợp con của tập hợp B hoặc A được chứa trong B hoặc B chứa A.
    - Mỗi tập hợp đều là tập hợp con của chính nó. Quy ước: tập hợp rỗng là tập hợp con của mọi tập hợp.
    - Giao của hai tập hợp (kí hiệu: Ç) là một tập hợp gồm các phần tử chung của hai tập hợp đó.
    2. Tập hợp các số tự nhiên: Kí hiệu N
    - Mỗi số tự nhiên được biểu diễn bởi một điểm trên tia số. Điểm biểu diễn số tự nhiên a trên tia số gọi là
    điểm a.
    - Tập hợp các số tự nhiên khác 0 được kí hiệu là N *.
    - Thứ tự trong tập hợp số tự nhiên:
    + Trong hai số tự nhiên khác nhau, có một số nhỏ hơn số kia. Trên hai điểm trên tia số, điểm ở
    bên trái biểu diễn số nhỏ hơn.
    + Nếu a < b và b < c thì a < c.
    + Mỗi số tự nhiên có một số liền sau duy nhất, chẳng hạn số tự nhiên liền sau số 2 là số 3; số liền
    trước số 3 là số 2; số 2 và số 3 là hai số tự nhiên liên tiếp. Hai số tự nhiên liên tiếp thì hơn kém nhau một
    đơn vị.
    + Số 0 là số tự nhiên nhỏ nhất. Không có số tự nhiên lớn nhất.
    + Tập hợp các số tự nhiên có vô số phần tử.
    3. Ghi số tự nhiên: Có nhiều cách ghi số khác nhau:
    - Cách ghi số trong hệ thập phân: Để ghi các số tự nhiên ta dùng 10 chữ số 0, 1, 2, 3, 4, 5, 6, 7, 8, 9. Cứ 10
    đơn vị ở một hàng thì làm thành một đơn vị ở hàng liền trước nó.

    GV: Nguyễn Chí Thành 0975705122
    Dạy trước chương trình cho học sinh đi du học.

    Nhận dạy kèm học sinh L6-L12

    Các dạng toán và phương pháp giải toán Đại số 6
    + Kí hiệu:

    chỉ số tự nhiên có hai chữ số, chữ số hàng chục là a, chữ số hàng đơn vị là b. Viết được

    chỉ số tự nhiên có ba chữ số, chữ số hàng trăm là a, chữ số hàng chục là b, chữ số hàng đơn
    vị là c. Viết được
    - Cách ghi số La Mã: có 7 chữ số
    Kí hiệu

    I

    V

    X

    L

    C

    D

    M

    Giá trị tương ứng trong
    hệ thập phân

    1

    5

    10

    50

    100

    500

    1000

    + Mỗi chữ số La Mã không viết liền nhau quá ba lần.
    + Chữ số có giá trị nhỏ đứng trước chữ số có giá trị lớn làm giảm giá trị của chữ số có giá trị lớn.
    - Cách ghi số trong hệ nhị phân: để ghi các số tự nhiên ta dùng 2 chữ số là : 0 và 1.
    - Các ví dụ tách một số thành một tổng:
    Trong hệ thập phân: 6478 = 6. 103 + 4. 102 + 7. 101 + 8. 100
    Trong hệ nhị phân: 1101 = 1. 23 + 1. 22 + 0. 21 + 1. 20
    II. CÁC DẠNG TOÁN
    Dạng 1: Viết một tập hợp cho trước
    Phương pháp giải
    Dùng một chữ cái in hoa (A,B…..) và dấu ngoặc nhọn { }, ta có thể viết một tập hợp theo hai
    cách:
    -Liệt kê các phần tử của nó.
    -Chỉ ra tính chất đặc trưng cho các phần tử của nó.
    Ví dụ: Viết tập M gồm các số tự nhiên có 1 chữ số.
    Cách 1: M={ 0;1;2;3;4;5;6;7;8;9 }.
    Cách 2: M={x∈ N ∨0 ≤ x ≤ 9 }
    Dạng 2: Sử dụng các kí hiệu
    Phương pháp giải





    và ∉

    Nắm vững ý nghĩa các kí hiệu ∈ và ∉
    Kí hiệu ∈ đọc là “phần tử của” hoặc “thuộc”.
    Kí hiệu ∉ đọc là “không phải là phần tử của” hoặc 'không thuộc”.


     Kí hiệu ∈ diễn tả quan hệ giữa một phần tử với một tập hợp; kí hiệu
    tập hợp.
    A ∈ M : A là phần tử của M; A ⊂ M : A là tập hợp con của M
    Ví dụ: Cho A = {1; 3; a; b} ; B = {3; b}
    Điền các kí hiệu
    thích hợp vào dấu (….)
    1 ......A;
    3 ... A
    ;
    3....... B ;
    Giải:
    1∈ A ;
    3∈ A
    ;
    3∈ B ;

    GV: Nguyễn Chí Thành 0975705122
    Dạy trước chương trình cho học sinh đi du học.



    diễn tả một quan hệ giữa hai

    B ...... A.
    B



    A.

    Nhận dạy kèm học sinh L6-L12

    Các dạng toán và phương pháp giải toán Đại số 6
    Dạng 3: Minh họa một tập hợp cho trước bằng hình vẽ
    Phương pháp giải
    Sử dụng biểu đồ ven. Đó là một đường cong khép kín, không tự cắt, mỗi phần tử của tập hợp được
    biểu diễn bởi một điểm ở bên trong đường cong đó.
    Ví dụ: Minh họa tập hợp sau bằng hình vẽ A=={x∈ N ∨5 ≤ x ≤ 8 }.
    Giải:

    5
    A

    7

    6

    8

    Dạng 4: Tìm số liền sau, số liền trước của một số tự nhiên cho trước
    Phương pháp giải
    -Để tìm số liền sau của số tự nhiên a, ta tính a+1
    -Để tìm số liền trước của số tự nhiên a khác 0, ta tính a-1
    Chú ý: -Số 0 không có số liền trước.
    -Hai số tự nhiên liên tiếp thì hơn kém nhau 1 đơn vị.
    Ví dụ: Tìm số liền sau và liền trước của các số sau: 1009; 2n; 3n+4; 2n-2.
    Giải:
    Số

    Số liền trước

    Số liền sau

    1009

    1008

    1010

    2n

    2n-1

    2n+1

    3n+4

    3n+3

    3n+5

    2n-2

    2n-3

    2n-1

    Dạng 5: Tìm các số tự nhiên thỏa mãn điều kiện cho trước
    Phương pháp giải
    Liệt kê tất cả các số tự nhiên thỏa mãn đồng thời các điều kiện đã cho.
    Ví dụ: Tìm x ∈ N : sao cho x là số chẵn và 12Giải: Gọi tập hợp các số cần tìm là A: A=={14;16;18 }
    Dạng 6: Biểu diễn trên tia số các số tự nhiên thỏa mãn điều kiện cho trước
    Phương pháp giải
    -Liệt kê các số tự nhiên thỏa mãn đồng thời các điều kiện đã cho
    -Biểu diễn các số vừa liệt kê trên tia số
    Ví dụ: Viết tập hợp A các số tự nhiên không vượt quá 6 bằng 2 cách, biểu diễn trên tia số các phần tử của
    tập hợp A.
    Giải:
    Cách 1: A={x∈ N ∨0 ≤ x ≤ 6 }

    GV: Nguyễn Chí Thành 0975705122
    Dạy trước chương trình cho học sinh đi du học.

    Nhận dạy kèm học sinh L6-L12

    Các dạng toán và phương pháp giải toán Đại số 6
    Cách 2: A=={0;1;2;3;4;5;6 }
    Biểu diễn trên tia số: Tập hợp A :
    Dạng 7:
    Ghi các số tự nhiên
    Phương pháp giải
    -Sử dụng cách tách số tự nhiên thành từng lớp để ghi.
    -Chú ý phân biệt: Số với chữ số, số chục với chữ số hàng chục, số trăm với chữ số hàng trăm…
    Ví dụ:
    Số đã cho

    Số trăm

    Chữ số
    hàng trăm

    Số trục

    Chữ số
    hàng trục

    1235

    12

    2

    123

    3

    2356

    23

    3

    235

    5

    Dạng 8: Viết tất cả các số có n chữ số từ n chữ số cho trước
    Phương pháp giải
    Giả sử từ ba chữ số a, b, c khác 0, ta viết các số có ba chữ số như sau:
    Chọn a là chữ số hàng trăm ta có:

    abc , acb ;

    Chọn b là chữ số hàng trăm ta có:

    bac , bca ;

    Chọn c là chữ số hàng trăm ta có: cab , cba .
    Vậy tất cả có 6 số có ba chữ số lập được từ ba chữ số khác 0: a, b và c.
    *Chú ý: Chữ số 0 không thể đứng ở hàng cao nhất của số có n chữ số phải viết.
    Ví dụ: Dùng các số 1,2,3,4,5 viết được bao nhiêu số tự nhiên khác nhau có 3 chữ số.
    Giải:
    Gọi số cần tìm là abc
    a có 5 cách chọn.
    b có 4 cách chọn (Vì các chữ số khác nhau).
    c có 3 cách chọn.
    Vậy ta được 3.4.5=60 số có 3 chữ số khác nhau từ các số trên.
    Ví dụ: Dùng các số 1,2,3,4,5 viết được bao nhiêu số tự nhiên có 3 chữ số.
    Giải:
    Gọi số cần tìm là abc
    a có 5 cách chọn.
    b có 5 cách chọn (Vì các chữ số có thể giống nhau).
    c có 5 cách chọn.
    Vậy ta được 5.5.5=125 số có 3 chữ số từ các số trên.
    Dạng 9: Tính số các số có n chữ số cho trước
    Phương pháp giải
    Để tính số các chữ số có n chữ số ta lấy số lớn nhất có n chữ số trừ đi số nhỏ nhất có n chữ số rồi
    cộng với 1.

    GV: Nguyễn Chí Thành 0975705122
    Dạy trước chương trình cho học sinh đi du học.

    Nhận dạy kèm học sinh L6-L12

    Các dạng toán và phương pháp giải toán Đại số 6
    Với các số cách nhau một khoảng không đổi, ta dùng công thức sau:
    Số các chữ số =

    Số cuối−Số đầu
    +1
    Khoảngcách

    Ví dụ: Có bao nhiêu số có 5 chữ số:
    Giải:
    Số lớn nhất có 5 chữ số là : 99999
    Số nhỏ nhất có 5 chữ số là: 10000
    Số các số có 5 chữ số là : (99999-10000)+1=90000
    Ví dụ: Có bao nhiêu số chẵn có 3 chữ số:
    Giải:
    Số chẵn lớn nhất có 3 chữ số là 998.
    Số chẵn nhỏ nhất có 3 chữ số là 100.
    Hai số chẵn cách nhau 2 đơn vị nên số các số chẵn có 3 chữ số là:

    998−100
    +1=450 số
    2
    Dạng 10: Sử dụng công thức đếm số các số tự nhiên
    Phương pháp giải
    Để đếm các số tự nhiên từ a đến b, hai số liên tiếp cách nhau d đơn vị. ta dùng công thức sau:

    b−a
    d +1 nghĩa là

    Số cuối−Số đầu
    +1
    Khoảngcách

    Ví dụ: Muốn viết các số từ 100 đến 999 dùng bao nhiêu chữ số 9:
    Các số chứa các chữ số 9 ở hàng đơn vị là: 109, 119, …999 có….. các số cách nhau 10 đơn vị nên có

    999−109
    +1=90 chữ số 9.
    10
    Các số chứa số 9 ở hàng trăm là :190, 191…199; 290, 291….299; …..990, 991…999 có: 10.9=90 chữ số
    9.
    Các số chứa chữ số 9 ở hàng trăm: 900, 901….999 có: …..

    999−900
    +1=100 chữ số 9.
    1

    Vậy có tất cả 90+90+100=280 chữ số 9
    Dạng 11:
    Đọc và viết các số bằng chữ số la mã
    Phương pháp giải
    Cách viết: Sử dụng quy ước ghi số La Mã.
    I: 1
    V: 5
    X: 10 L: 50 C: 100 D:500 M:1000
    * Thông thường người ta quy định các chữ số I, X, C, M, không được lặp lại quá ba lần ; các chữ số V, L, D
    không được lặp lại quá một lần (nghĩa là không lặp lại)
    * Chữ số cơ bản được lặp lại 2 hoặc 3 lần biểu thị giá trị gấp 2 hoặc gấp 3.

    GV: Nguyễn Chí Thành 0975705122
    Dạy trước chương trình cho học sinh đi du học.

    Nhận dạy kèm học sinh L6-L12

    Các dạng toán và phương pháp giải toán Đại số 6
    Ví dụ:
    +      I = 1   ;   II = 2   ;  III = 3
    +     X = 10 ; XX = 20  ;  XXX = 30
    +     C = 100   ;   CC = 200   ;  CCC = 300
    +     M = 1000  ; MM =2000   : MMM = 3000
    * Phải cộng, trái trừ:
        Chữ số thêm vào bên phải là cộng thêm (nhỏ hơn chữ số gốc) và cũng không được thêm quá 3 lần:
     Ví dụ:
    + V = 5 ; VI = 6 ; VII = 7 ; VIII = 8
    +Nếu viết: VIIII = 9 (không đúng)
    + L = 50 ; LX = 60 ; LXX = 70 ; LXXX = 80
    + C = 100 ; CI = 101  : CL =150
    + 3833 gồm : 3000 + 800 + 30 + 3 nên được viết:  MMMDCCCXXXIII
    +2787 gồm: 2000 + 700 + 80 + 7 nên được viết: MMDCCLXXXVII
    Chữ số viết bên trái là bớt đi (nghĩa là lấy số gốc trừ đi số viết bên trái thành giá trị của số được hình thành - và
    dĩ nhiên số mới nhỏ hơn số gốc. Chỉ được viết một lần)
    Ví dụ:
    + số 4 (4= 5-1) viết là     IV
    + số 9 (9=10-1)  Viết là     IX
    + số 40 = XL      ;  + số 90  = XC
    + số 400 = CD    ; + số 900 = CM
    + MCMLXXXIV = 1984
    +MMXIV = 2014
    Nói cách khác: Người ta dùng các chữ số I, V, X, L, C, D, M, và các nhóm chữ số IV, IX, XL, XC, CD, CM để
    viết số La Mã. Tính từ trái sang phải giá trị của các chữ số và nhóm chữ số giảm dần. Một vài ví dụ:
    Ví dụ:
    * MMMDCCCLXXXVIII = ba nghìn tám trăm tám mươi tám
    * MMMCMXCIX = ba nghìn chín trăm chín mươi chín
    Cách đọc:
                Đọc số nhỏ thì dễ nhưng đọc các số lớn cũng khó lắm đấy. Như trên đã nói: Tính từ trái sang phải giá trị
    của các chữ số và nhóm chữ số giảm dần nên ta chú ý đến chữ số và nhóm chữ số hàng ngàn trước đến hàng
    trăm, hàng chục và hàng đơn vị (như đọc số tự nhiên)
    Ví dụ:
    -Số: MMCMXCIX  ta chú ý: hàng ngàn: MM = hai ngàn ; hàng trăm: CM = chín trăm ; hàng chục: XC = Chín
    mươi ; hàng đơn vị: IX = chín. Đọc là: Hai ngàn chín trăm chín mươi chín.
    -Số: MMMDXLIV ta chú ý: MMM = ba ngàn ; D = năm trăm; XL = bốn mươi ; IV = bốn. Đọc là: ba nghìn
    năm trăm bốn mươi bốn.
    Chú ý:
    - I chỉ có thể đứng trước V hoặc X,
    - X chỉ có thể đứng trước L hoặc C,
    - C chỉ có thể đứng trước D hoặc M.

    GV: Nguyễn Chí Thành 0975705122
    Dạy trước chương trình cho học sinh đi du học.

    Nhận dạy kèm học sinh L6-L12

    Các dạng toán và phương pháp giải toán Đại số 6
    Đối với những số lớn hơn (4000 trở lên), một dấu gạch ngang được đặt trên đầu số gốc để chỉ phép nhân cho
    1000:

    M : Đọc là một triệu
    IV : Bố nghìn
    Đối với những số rất lớn thường không có dạng thống nhất, mặc dù đôi khi hai gạch trên hay một gạch dưới
    được sử dụng để chỉ phép nhân cho 1.000.000. Điều này có nghĩa là X gạch dưới (X) là mười triệu.
    Số La Mã không có số 0

    VD: đọc các số La Mã sau: XIV; XXVI. Viết các số La Mã: 17; 25
    SỐ PHẦN TỬ CỦA TẬP HỢP, TẬP CON
    Dạng 1: Tìm số phần tử của một tập hợp cho trước
    Phương pháp giải
    -Căn cứ vào các phần tử đã được liệt kê hoặc căn cứ vào tính chất đặc trưng cho các phần tử của
    tập hợp cho trước, ta có thể tìm được số phần tử của tập hợp đó.
    - Sử dụng các công thức sau:
    Tập hợp các số tự nhiên từ a đến b có: b – a + 1 phần tử (1)
    Tập hợp các số chẵn từ số chẵn a đến số chẵn b có: (b – a) : 2 + 1 phần tử ( 2)
    Tập hợp các số lẻ từ số lẻ m đến số lẻ n có: (n-m): 2 + 1 phần tử ( 3)
    Tập hợp các số tự nhiên từ a đến b, hai số kế tiếp cách nhau d đơn vị, có: (b-a): d +1 phần tử
    ( Các công thức (1), (2), (3) là các trường hợp riêng của công thức (4) ) .
    Chú ý: ự khác nhau giữa các tập sau: ∅ , {0}, { ∅ }
    Ví dụ: Tìm số phần tử các tập hợp sau:
    x+1=3;
    A={1, 3, 5, …99}
    x.0=0;
    B={1, 4, 7, …301}
    Giải:
    x+1=3 => x=2 nên tập hợp có 1 phần tử.
    x.0=0 với mọi giá trị x nên tập hợp có vô số phần tử.

    99−1
    +1=50 phần tử.
    2
    301−1
    +1=101phần tử.
    B={1, 4, 7, …301} có số phần tử là:
    3
    A={1, 3, 5, …99} có số phần tử là:

    Dạng 2: Viết tất cả các tập hợp con của tập cho trước
    Phương pháp giải
    Giả sử tập hợp A có n phần tử. Ta viết lần lượt các tập hợp con:
    Không có phần tử nào ( ∅ );
    Có 1 phần tử;
    Có 2 phần tử;

    GV: Nguyễn Chí Thành 0975705122
    Dạy trước chương trình cho học sinh đi du học.

    Nhận dạy kèm học sinh L6-L12

    Các dạng toán và phương pháp giải toán Đại số 6
    ...
    Có n phần tử.
    Chú ý: Tập hợp rỗng là tập hợp của mọi tập hợp: ∅⊂ E. Người ta chứng minh được rằng nếu
    một hợp có n phần tử thì số tập hợp con của nó bằng 2n.
    Ví dụ: cho A={1, 3, 5, 9} Viết tất cả các tập con của A.
    Giải:
    Tập con không có phần tử nào là: ∅
    Tập con có một phần tử là: {1}, {3}, {5}, {9}.
    Tập con có 2 phần tử là: {1;3}; {1;5}; {1;9}; {3;5}; {3;9}; {5;9}.
    Tập con có 3 phần tử là: {1;3;5}; {1;3;9}; {1;5;9}; {3;5;9}
    Tập con có 4 phần tử là: {1;3;5;9}
    III. BÀI TẬP
    Bài 1: Cho tập hợp A là các chữ cái trong cụm từ “Thành phố Hồ Chí Minh”
    a.
    Hãy liệt kê các phần tử của tập hợp A.
    b.
    Điền kí hiệu thích hợp vào ô vuông
    a) b
    A ;
    b) c
    A ;. c)
    h
    A
    Lưu ý HS: Bài trên không phân biệt chữ in hoa và chữ in thường trong cụm từ đã cho.
    Bài 2: Cho tập hợp các chữ cái X = {A, C, O}
    a/ Tìm cụm chữ tạo thành từ các chữ của tập hợp X.
    b/ Viết tập hợp X bằng cách chỉ ra các tính chất đặc trưng cho các phần tử của X.
    Bài 3: Cho các tập hợp
    A = {1; 2; 3; 4; 5; 6;8;10} ; B = {1; 3; 5; 7; 9;11}
    a/ Viết tập hợp C các phần tử thuộc A và không thuộc B.
    b/ Viết tập hợp D các phần tử thuộc B và không thuộc A.
    c/ Viết tập hợp E các phần tử vừa thuộc A vừa thuộc B.
    d/ Viết tập hợp F các phần tử hoặc thuộc A hoặc thuộc B.
    Bài 4: Cho tập hợp A = {1; 2;3;x; a; b}
    a/ Hãy chỉ rõ các tập hợp con của A có 1 phần tử.
    b/ Hãy chỉ rõ các tập hợp con của A có 2 phần tử.
    c/ Tập hợp B = {a, b, c} có phải là tập hợp con của A không?
    Bài 5: Cho tập hợp B = {a, b, c}. Hỏi tập hợp B có tất cả bao nhiêu tập hợp con?
    Hướng dẫn
    - Tập hợp con của B không có phần từ nào là tập…..
    - Các tập hợp con của B có một phần tử là …….
    - Các tập hợp con của B có hai phần tử là …….
    - Tập hợp con của B có 3 phần tử chính là ……
    Vậy tập hợp A có tất cả …. tập hợp con.

    GV: Nguyễn Chí Thành 0975705122
    Dạy trước chương trình cho học sinh đi du học.

    Nhận dạy kèm học sinh L6-L12

    Các dạng toán và phương pháp giải toán Đại số 6
    Ghi chú. Một tập hợp A bất kỳ luôn có hai tập hợp con đặc biệt. Đó là tập hợp rỗng

    và chính tập hợp

    A. Ta quy ước
    là tập hợp con của mỗi tập hợp.
    Bài 6: Cho A = {1; 3; a; b} ; B = {3; b}
    Điền các kí hiệu
    thích hợp vào dấu (….)
    1 ......A;
    3 ... A
    ;
    3....... B ;
    Bài 7: Cho các tập hợp

    B ...... A

    ;
    Hãy điền dấu
    hay vào các ô dưới đây
    N .... N*
    ;
    A ......... B
    Bài 8: Gọi A là tập hợp các số tự nhiên có 3 chữ số. Hỏi tập hợp A có bao nhiêu phần tử?
    Bài 9: Hãy tính số phần tử của các tập hợp sau:
    a/ Tập hợp A các số tự nhiên lẻ có 3 chữ số.
    b/ Tập hợp B các số 2, 5, 8, 11, …, 296, 299, 302
    c/ Tập hợp C các số 7, 11, 15, 19, …, 275 , 279
    Bài 10: Cha mua cho em một quyển số tay dày 145 trang. Để tiện theo dõi em đánh số trang từ 1 đến 256.
    Hỏi em đã phải viết bao nhiêu chữ số để đánh hết cuốn sổ tay?
    Bài 11:Cho hai tập hợp
    M = {0,2,4,…..,96,98,100;102;104;106};
    Q = { x ∈ N* | x là số chẵn ,x<106};
    a) Mỗi tập hợp có bao nhiêu phần tử?
    b)Dùng kí hiệu ⊂ để thực hiên mối quan hệ giữa M và Q.
    Bài 12:Cho hai tập hợp R={a ∈ N | 75 ≤ a ≤ 85}; S={b ∈ N | 75 ≤b ≤ 91};
    a) Viết các tập hợp trên;
    b) Mỗi tập hợp có bao nhiêu phần tử;
    c) Dùng kí hiệu ⊂ để thực hiên mối quan hệ giữa hai tập hợp đó.
    Bài 13: Hãy tính số phần tử của các tập hợp sau:
    a/ Tập hợp A các số tự nhiên lẻ có 3 chữ số.
    b/ Tập hợp B các số 2, 5, 8, 11, …, 296, 299, 302
    c/ Tập hợp C các số 7, 11, 15, 19, …, 275 , 279
    Hướng dẫn
    a/ Tập hợp A có (999 – 101):2 +1 = 450 phần tử.
    b/ Tập hợp B có (302 – 2 ): 3 + 1 = 101 phần tử.
    c/ Tập hợp C có (279 – 7 ):4 + 1 = 69 phần tử.
    Cho HS phát biểu tổng quát:
    - Tập hợp các số chẵn từ số chẵn a đến số chẵn b có (b – a) : 2 + 1 phần tử.
    - Tập hợp các số lẻ từ số lẻ m đến số lẻ n có (n – m) : 2 + 1 phần tử.
    - Tập hợp các số từ số c đến số d là dãy số các đều, khoảng cách giữa hai số liên tiếp của dãy là 3
    có (d – c ): 3 + 1 phần tử.

    GV: Nguyễn Chí Thành 0975705122
    Dạy trước chương trình cho học sinh đi du học.

    Nhận dạy kèm học sinh L6-L12

    Các dạng toán và phương pháp giải toán Đại số 6
    Bài 14: Cha mua cho em một quyển số tay dày 145 trang. Để tiện theo dõi em đánh số trang từ 1 đến 256.
    Hỏi em đã phải viết bao nhiêu chữ số để đánh hết cuốn sổ tay?
    Hướng dẫn:
    - Từ trang 1 đến trang 9, viết 9 chữsố.
    - Từ trang 10 đến trang 99 có 90 trang, viết 90 . 2 = 180 chữ số.
    - Từ trang 100 đến trang 145 có (145 – 100) + 1 = 46 trang, cần viết 46 . 3 = 138 chữ số.
    Vậy em cần viết 9 + 180 + 138 = 327số.
    Bài 15: Các số tự nhiên từ 1000 đến 10000 có bao nhiêu số có đúng 3 chữ số giống nhau.
    Hướng dẫn:- Số 10000 là số duy nhất có 5 chữ số, số này có hơn 3 chữ số giống nhau nên không thoả
    mãn yêu cầu của Bài.
    Vậy số cần tìm chỉ có thể có dạng:
    - Xét số dạng

    ,

    , chữ số a có 9 cách chọn ( a

    ,
    0)

    ,

    với a

    b là các chữ số.

    có 9 cách chọn để b khác a.

    Vậy có 9 . 8 = 71 số có dạng
    .
    Lập luận tương tự ta thấy các dạng còn lại đều có 81 số. Suy ta tất cả các số từ 1000 đến 10000 có
    đúng 3 chữ số giống nhau gồm 81.4 = 324 số.
    Bài 16: Có bao nhi êu số có 4 chữ số mà tổng các chữ số bằng 3?
    HD Giải
    3=0+0+3=0+1+1+1=1+2+0+0
    3000
    1011
    2001
    1002
    1110
    2100
    1200
    1101
    2010
    1020
    1 + 3 + 6 = 10 số
    Bài 17: Tính nhanh các tổng sau
    a, 29 + 132 + 237 + 868 + 763
    b, 652 + 327 + 148 + 15 + 73
    HD:
    a, 29 + 132 + 237 + 868 + 763 = 29 + (132 + 868) + (237 + 763)
    = 29 + 1000 + 1000 = 2029
    b, 652 + 327 + 148 + 15 + 73 = (652 + 148) + (327 + 73) + 15
    = 700 + 400 + 15 = 1115
    Bài 18: Cho hai tập hợp
    M = {0,2,4,…..,96,98,100;102;104;106};
    Q = { x ∈ N* | x là số chẵn ,x<106};
    a) Mỗi tập hợp có bao nhiêu phần tử?
    b)Dùng kí hiệu ⊂ để thực hiên mối quan hệ giữa M và Q.
    Bài 19:Cho hai tập hợp R={a ∈ N | 75 ≤ a ≤ 85}; S={b ∈ N | 75 ≤b ≤ 91};
    a) Viết các tập hợp trên;
    b) Mỗi tập hợp có bao nhiêu phần tử;

    GV: Nguyễn Chí Thành 0975705122
    Dạy trước chương trình cho học sinh đi du học.

    Nhận dạy kèm học sinh L6-L12

    Các dạng toán và phương pháp giải toán Đại số 6
    c) Dùng kí hiệu



    để thực hiên mối quan hệ giữa hai tập hợp đó.

    Bài 20: Viết các tập hợp sau và cho biết mỗi tập hợp có bao nhiêu phần tử:
    a) Tập hợp A các số tự nhiên x mà 17 – x = 5 ;
    b) Tập hợp B các số tự nhiên y mà 15 – y = 18;
    c) Tập hợp C các số tự nhiên z mà 13 : z = 1;
    d) Tập hợp D các số tự nhiên x , x ∈ N* mà 0:x = 0;
    Bài 21: Tính số điểm về môn toán trong học kì I . lớp 6A có 40 học sinh đạt ít nhất một điểm 10 ; có 27
    học sinh đạt ít nhất hai điểm 10 ; có 29 học sinh đạt ít nhất ba điểm 10 ; có 14 học sinh đạt ít nhất bốn
    điểm 10 và không có học sinh nào đạt được năm điểm 10.
    dung kí hiệu ⊂ để thực hiên mối quan hệ giữa các tập hợp học sinh đạt số các điểm 10 của lớp 6A , rồi
    tính tổng số điểm 10 của lớp đó.
    Bài 22:Bạn Thanh đánh số trang của một cuốn sách bằng các số tự nhiên từ 1 đến359 .hỏi bạn nam phải
    viết tất cả bao nhiêu chữ số?
    Bài 23: Để đánh số trang một quyển sách từ trang 1 đến trang cuối người ta đã dùng hết tất cả 834 chữ số.
    Hỏi
    a. Quyển sách có tất cả bao nhiêu trang?
    b. Chữ số thứ 756 là chữ số mấy?
    Bài 24. Viết các tập hợp sau rồi tìm số phần tử của tập hợp đó.
    a) Tập hợp A các số tự nhiên x mà 8:x =2.
    b) Tập hợp B các số tự nhiên x mà x+3<5.
    c) Tập hợp C các số tự nhiên x mà x-2=x+2.
    d)Tập hợp D các số tự nhiên mà x+0=x
    Bài 25. Cho tập hợp A = { a,b,c,d}
    a) Viết các tập hợp con của A có một phần tử.
    b) Viết các tập hợp con của A có hai phần tử.
    c) Có bao nhiêu tập hợp con của A có ba phần tử? có bốn phần tử?
    d) Tập hợp A có bao nhiêu tập hợp con?
    Bài 26. Xét xem tập hợp A có là tập hợp con của tập hợp B không trong các trờng hợp sau.
    a, A={1;3;5}, B = { 1;3;7}
    b, A= {x,y}, B = {x,y,z}
    c, A là tập hợp các số tự nhiên có tận cùng bằng 0, B là tập hợp các số tự nhiên chẵn.
    Bài 27. Ta gọi A là tập con thực sự của B nếu A  B ; A B . Hãy viết các tập con thực sự của tập hợp
    B = {1;2;3}.
    Bài 28. Cho tập hợp A = {1;2;3;4} và B = {3;4;5}. Hãy viết các tập hợp vừa
    là tập con của A, vừa là
    tập con của B.
    Bài 29. Chứng minh rằng nếu A  B, B  C thì A  C
    Bài 30. Có kết luận gì về hai tập hợp A,B nếu biết.
    a, x  B thì x  A
    b, x  A thì x  B , x  B thì x  A .
    Bài 31. Cho H là tập hợp ba số lẽ đàu tiên, K là tập hợp 6 số tự nhiên đầu tiên.

    GV: Nguyễn Chí Thành 0975705122
    Dạy trước chương trình cho học sinh đi du học.

    Nhận dạy kèm học sinh L6-L12

    Các dạng toán và phương pháp giải toán Đại số 6
    a, Viết các phần tử thuộc K mà không thuộc H.

    b,CMR H  K

    c, Tập hợp M với H  M , M  K .
    - Hỏi M có ít nhất bao nhiêu phần tử? nhiều nhất bao nhiêu phần tử?
    - Có bao nhiêu tập hợp M có 4 phần tử thỏa mãn điều kiện trên?
    Bài 32. Cho

    a  18;12;81 , b   5;9

    . Hãy xác định tập hợp M = {a-b}.

    Bài 33. Cho tập hợp A = {14;30}. Điền các ký hiệu ,  vào ô trống.
    a, 14
    A ; b, {14}
    A;
    c,
    {14;30}
    A.

    Bài 34: Có bao nhiêu số tự nhiên không vượt quá n ( n thuộc N)
    Bài 35: Cho A={x thuộc N: x chia hết 2,3 và x<100}
    B={x thuộc N: x chia hết 8 và x<100}
    a. Liệt kê các phân tử của A và B
    b. Có nhận xét gì về các phần tử của A và B.
    Bài 36. Một lớp có 53 học sinh trong đó có 40 hs giỏi toán và 30 hs giỏi văn.
    a. Có nhiều nhất bao nhiêu học sinh giỏi cả 2 môn
    b. có ít nhất bao nhiêu học sinh giỏi cả hai môn.
    c. Nếu có 3 hs không giỏi cả văn và toán thì có nhiêu nhất bao nhiêu hs giỏi cả văn và toán
    Bài 36: Viết tập hợp các số tự nhiên có hai chữ số sao cho:
    a. có ít nhất 1 chữ số 5
    b. có chữ số hàng trục lớn hơn chữ số hàng đơn vị
    c. chữ số hàng trục nhỏ hơn chữ số hàng đơn vị.
    BÀI TẬP SỐ TỰ NHIÊN
    Bài 1. Viết tập hợp các số tự nhiên có 2 chữ số trong đó
    a, Chữ số hàng đơn vị gấp hai lần chữ số hàng chục.
    b, Chữ số hàng đơn vị nhỏ hơn chữ số hàng chục là 4.
    c, Chữ số hàng đơn vị lớn hơn chữ số hàng chục.
    Bài 2. Cho 3 chữ số a,b,c. Gọi A là tập hợp các số tự nhiên gồm 3 chữ số nói trên.
    a, Viết tập hợp A.
    b, Tính tổng các phần tử của tập hợp A.
    Bài 3. Cho một số có 3 chữ số là abc (a,b,c khác nhau và khác 0). Nếu đổi chỗ các chữ số cho nhau ta
    được một số mới. Hỏi có tất cả bao nhiêu số có 3 chữ số như vậy? (kể cả số ban đầu).
    Bài 4. Cho 4 chữ số a,b,c và 0 (a,b,c khác nhau và khác 0).Với cùng cả 4 số này có thể lập được bao
    nhiêu số có 4 chữ số?
    Bài 5. Cho 5 chữ số khác nhau. Với cùng cả 5 chữ số này có thể lập được bao nhiêu số có 5 chữ số?
    Bài 6. Quyển sách giáo khoa Toán 6 có tất cả 132 trang. Hai trang đầu không đánh số. Hỏi phải dùng tất
    cả bao nhiêu chữ số để đánh số các trang của quyển sách này?

    GV: Nguyễn Chí Thành 0975705122
    Dạy trước chương trình cho học sinh đi du học.

    Nhận dạy kèm học sinh L6-L12

    Các dạng toán và phương pháp giải toán Đại số 6
    Bài 7. Tìm hai số biết tổng là 176 ; mỗi số đều có hai chữ số khác nhau và số này là số kia viết theo thứ tự
    ngược lại.
    Bài 8. Cho 4 chữ số khác nhau và khác 0.
    a) Chứng tỏ rằng có thể lập được 4! số có 4 chữ số khác nhau.
    b) Có thể lập được bao nhiêu số có hai chữ số khác nhau trong 4 chữ số đó.
    Bài 9. Tính các tổng sau.
    a) 1 + 2+ 3+ 4 +....+ n b) 2+4+6+8+...+2.n
    c) 1+3+5+7+...+(2.n +1) d) 1+4+7+10+..+2005
    e) 2+5+8+...+2006
    f) 1+5+9+..+2001
    Bài 10 Tính nhanh tổng sau. A = 1 +2 +4 +8 +16 +....8192
    Bài 11 a) Tính tổng các số lẻ có hai chữ số
    b) Tính tổng các số chẵn có hai chữ số.
    Bài 12. a) Tổng 1+ 2+ 3+ 4 +...+ n có bao nhiêu số hạng để kết quả bằng 190
    b) Có hay không số tự nhiên n sao cho 1 + 2+ 3+ 4 +....+ n = 2004
    Bài 13. Tính giá trị của biểu thức.
    a) A = (100 - 1).(100 - 2).(100 - 3)...(100 - n) với n  N * và tích trên có đúng 100 thừa số.
    b) B = 13a + 19b + 4a - 2b vớ a + b = 100.
    Bài 14.Tìm các chữ số a, b, c, d biết a.bcd .abc abcabc
    Bài 15. Chứng tỏ rằng hiệu sau có thể viết được thành một tích của hai thừa số bằng nhau: 11111111 2222.
    Bài 16. Hai số tự nhiên a và b chia cho m có cùng số d, a  b. Chứng tỏ rằng a - b : m
    Bài 17. Chia 129 cho một số ta được số dư là 10. Chia 61 cho số đó ta được số dư là 10. Tìm số chia.
    Bài 18. Cho S = 7 + 10 + 13 + ... + 97 + 100
    a) Tổng trên có bao nhiêu số hạng?
    b) Tìm số hạng thứ 22
    c) Tính S.
    Bai 19. Chứng minh rằng mỗi số sau có thể viết được thành một tích của hai số tự nhiên liên tiếp:
    a) 111222 ; b) 444222
    Bài 20 . Tìm số chia và số bị chia, biết rằng: Thương bằng 6, số dư bằng 49, tổng của số bị chia,số chia và
    dư bằng 595.
    Bài 21. Tính bằng cách hợp lý.

    1  2  3  ...  200
    B
    6  8  10  ...  34
    a)
    b)
    1.5.6  2.10.12  4.20.24  9.45.54
    C
    1.3.5  2.6.10  4.12.20  9.27.45
    A

    44.66  34.41
    3  7  11  ...  79

    c)
    Bài 22. Tìm kết quả của phép nhân.

    GV: Nguyễn Chí Thành 0975705122
    Dạy trước chương trình cho học sinh đi du học.

    Nhận dạy kèm học sinh L6-L12

    Các dạng toán và phương pháp giải toán Đại số 6

    a)

    A 33...3.99...9
     
    2005 c .s

    2005 c . s

    b)

    B 33...3.33...3
     
    2005c .s

    2005 c . s

    Bài 23.Tìm giá trị nhỏ nhất của b. thức A = 2009 - 1005:(999 - x)với x  N
    PHÉP CỘNG, PHÉP TRỪ, PHÉP NHÂN VÀ PHÉP CHIA
    Dạng 1 : Áp dụng để tính nhanh
    Phương pháp giải
    - Quan sát, phát hiện các đặc điểm của các số hạng, các thừa số.
    - Tổng của hai số không đổi nếu ta thêm vào ở số hạng này và bớt đi ở số hạng kia cùng một số đơn vị.
    Ví dụ: 99 + 48 = (99+1)-( 48-1) = 100+ 47 = 147.
    - Hiệu của hai số không đổi nếu ta thêm vào một số bị trừ và số trừ cùng một số đơn vị.
    Ví dụ: 316-97 =(316+3) – (97+3) = 319-100= 219
    - Tích của hai số không đổi nếu ta nhân thừa số này và chia thừa số kia cho cùng một số
    Ví dụ: 25.12 = (25.4).(12:4) = 100.3 =300
    - Thương của hai số không đổi nếu ta nhân cả số bị chia và số chia với cùng một số.
    Ví dụ: 1200: 50 =( 1200.2) : (50.2) =2400:100 =24.
    - Chia một tổng cho một số (a+b) : c = a: c + b:c (trường hợp chia hết).
    Ví dụ: 276:23 = (230 + 46) : 23 = 230:23 + 46:23 = 10 + 2 =12.
    - Từ đó, xét xem nên áp dụng tính chất nào (giao hoán, kết hợp, phân phối) để tính một cách nhanh
    chóng.
    Ví dụ: Tính nhanh
    A=46+17+54
    B=4.37.25
    C=87.36+87.64
    Dạng 2: Tìm số chưa biết trong một đẳng thức
    Phương pháp giải
    - Để tìm số chưa biết trong một phép tính, ta cần nắm vững quan hệ giữa các số trong phép tính. Chẳng
    hạn: số bị trừ bằng hiệu cộng với số trừ, một số hạng bằng tổng của hai số trừ số hạng kia…
    - Phương pháp chung ta thường chuyển các số hạng không chứa x về 1 vế, các số hạng chứa x về một
    vế( đổi dấu).
    Đặc biệt cần chú ý: với mọi a ∈ N ta đều có a.0 = 0; a.1=a.
    Ví dụ: Tìm x biết:
    2x-1=7 ; 3(x+5)=20; 20-(3x-1)=15; x:13=21 ; 7x-8=713 ; 8(2x-4)=0 ; 0:x=0 ; (x-35)-120=0
    Dạng 4: Tìm chữ số chưa biết trong phép cộng,trừ, phép nhân, chia
    Phương pháp giải
    - Tính lần lượt theo cột từ phải sang trái. Chú ý những trường hợp có “nhớ”.
    - Làm tính nhân từ phải sang trái, căn cứ vào những hiểu biết về tính chất của số tự nhiên và của
    phép tính, suy luận từng bước để tìm ra những số chưa biết.

    GV: Nguyễn Chí Thành 0975705122
    Dạy trước chương trình cho học sinh đi du học.

    Nhận dạy kèm học sinh L6-L12

    Các dạng toán và phương pháp giải toán Đại số 6
    - Đối với phép trừ, tính lần lượt theo cột từ phải sang trái, chú ý những trường hợp có “nhớ”.
    - Đối với phép chia, đặt tính và lần lượt thực hiện phép chia.
    Ví dụ: Thay * bằng các số: 6*6*-*8*4=2856
    Ví dụ: Thay dấu * bằng các số thích hợp: **4* x 176*=**900
    Dạng 5: So sánh hai tổng hoặc hai tích mà không tính cụ thể giá trị của chúng.
    Phương pháp giải
    Nhận xét, phát hiện và sử dụng các đặc điểm của các số hạng hoặc các thừa số trong tổng hoặc
    tích. Từ đó dựa vào các tính chất của phép cộng và phép nhân để rút ra kết luận.
    Ví dụ: So sánh
    a) 1367+5472 và 5377+1462
    1367+5472=1060+307+5070+402=(1060+402)+(5070+307)
    b) 2003.2003 và 2002.2004
    2003.2003=2003(2002+1)=
    2002.2004=2002(2003+1)=
    Dạng 7: Bài tập về phép chia có dư
    Phương pháp giải
    Sử dụng định nghĩa của phép chia có dư và công thức:
    a = b.q + r (0< r < b)
    Từ công thức trên suy ra : b = (a – r) : q; q = (a – r) : b; r = a –b.q.
    Ví dụ: Bạn Tâm dung 21000 đồng để mua hai loại vở loại 1 là 2000 đồng và loại 2 là 1500 đồng. Hỏi nếu
    chỉ mua một loại thì bạn Tâm mua được nhiều nhất bao nhiêu quyển vở loại 1, bao nhiêu quyển vở loại 2?
    Ví dụ: Tìm số tự nhiên nhỏ nhất, biết rằng khi chia số này cho 29 dư 5 và chia cho 31 dư 28

    Ta có a = 29q + 5 = 31p +28 (0,5đ) <=> 29(q - p) = 2p + 23
    Vì 2p + 23 lẻ nên( q - p) lẻ => q - p ( ) 1. (0,75đ)
    Vì a nhỏ nhất hay q - p = 1 => p = 3;
    => a = 121 (0,5đ)
    Vậy số cần tìm là 121 (0,25đ)
    Ví dụ: Một số tự nhiên chia cho 120 dư 58, chia cho 135 dư 88. Tìm a, biết a bé nhất.
    1 1 1 11 1
    + +. + = −
    3.10 10.17 31.38 7 3 38

    Ta có
    (q1, q2
    N)
    Từ ( 2 ) , ta có 9 . a = 1080 . q2 + 704 + a
    (3)
    Kết hợp ( 1 ) với ( 2 ) , ta được a = 1080 . q – 180
    Vì a nhỏ nhất, cho nên, q phải nhỏ nhất
    => q = 1
    => a = 898
    BÀI TẬP:
    Tính nhanh:
    Bài 1: Tính tổng sau đây một cách hợp lý nhất.

    GV: Nguyễn Chí Thành 0975705122
    Dạy trước chương trình cho học sinh đi du học.

    Nhận dạy kèm học sinh L6-L12

    Các dạng toán và phương pháp giải toán Đại số 6
    a/ 67 + 135 + 33
    b/ 277 + 113 + 323 + 87
    ĐS: a/ 235
    b/ 800
    Bài 2: Tính nhanh các phép tính sau:
    a/ 8 x 17 x 125
    b/ 4 x 37 x 25
    ĐS: a/ 17000
    b/ 3700
    Bài 3: Tính nhanh một cách hợp lí:
    a/ 997 + 86
    b/ 37. 38 + 62. 37
    c/ 43. 11; 67. 101; 423. 1001
    d/ 67. 99; 998. 34
    Hướng dẫn
    a/ 997 + (3 + 83) = (997 + 3) + 83 = 1000 + 80 = 1083
    Sử dụng tính chất kết hợp của phép cộng.
    Nhận xét: 997 + 86 = (997 + 3) + (86 -3) = 1000 + 83 = 1083. Ta có thể thêm vào số hạng này đồng thời
    bớt đi số hạng kia với cùng một số.
    b/ 37. 38 + 62. 37 = 37.(38 + 62) = 37.100 = 3700.
    Sử dụng tính chất phân phối của phép nhân đối với phép cộng.
    c/ 43. 11 = 43.(10 + 1) = 43.10 + 43. 1 = 430 +...
     
    Gửi ý kiến

    Kết hợp những điều hiểu biết với những kinh nghiệm và kiến thức sẵn có – đó là nguyên tắc cần thiết khi lựa chọn sách. (Krupxkaia

    KÍNH CHÀO QUÝ THẦY CÔ VÀ QUÝ BẠN ĐỌC ĐÃ ĐẾN TƯỜNG WEBSITE CỦA THƯ VIỆN TRƯỜNG THCS HẠ LONG - ĐẶC KHU VÂN ĐỒN - QUẢNG NINH !